天成彩票

学术科研
天成彩票当前位置: 学院天成彩票 > 学术科研 > 正文
天成彩票 研究团队构建人工智能驱动的抗菌肽设计新范式
天成彩票发布日期 2025-09-16 天成彩票浏览次数

(图文 | 王永康 编辑 | 信息 审核 | 章文)近日,天成彩票 章文教授团队在国际期刊《Advanced Science》发表题为“Controllable Generation of Pathogen-Specific Antimicrobial Peptides Through Knowledge-Aware Prompt Diffusion Model”的研究论文。该研究由天成彩票 科研团队自主提出人工智能赋能的抗菌肽设计新模型,突破了传统生成模型难以面向具体病原体设计抗菌肽的瓶颈,面向病原体特异性抗菌肽的精准生成——KPPepGen(Knowledge-aware Prompt Peptide Generation),结合知识提示机制与扩散生成框架,在抗菌肽的精准生成与优化方面取得重要进展。

为应对细菌耐药性加剧带来的“后抗生素时代”风险,抗菌肽因其优良抗菌性、低毒性等优势,被视为下一代抗感染药物的核心候选。然而目前主流生成方法依赖于数据丰富的病原体,缺乏对样本稀缺病原体的泛化能力,且缺乏机制上的可控性。该研究构建了融合基因本体论(Gene Ontology)与病原体知识图谱的“知识感知提示机制”,通过提示引导扩散模型(prompt-guided diffusion),可一次性完成针对56种病原体的肽序列生成,实现抗菌肽生成从一对一(one-against-one)向一对多(one-against-all)的跃升。为进一步提升生成肽的结构可靠性与靶向性,KPPepGen模型引入多位点组合突变与局部扩散优化机制,显著提升了已有抗菌肽的性能,在结构变异、结合能力、序列稳定性等多个维度显著优于现有方法。研究在计算模拟评估中展现了极强的泛化能力与生物一致性。在样本最稀缺的10类病原体上,KPPepGen较次优方法在生成肽的多项指标(包括序列相似性、稳定性、穿膜倾向性等)上平均提升超10%;分子对接实验表明,生成肽在与病原体靶点的结合能力上亦显著优于现有模型。此外,研究团队完成了针对大肠杆菌和金黄色葡萄球菌的湿实验验证,在生成的10个候选肽中,有9个展现出高效抗菌活性(MIC≤128 μg/mL),其中3个对目标病原体表现出显著活性(MIC≤32 μg/mL),且9个肽均表现出低细胞毒性(CC50 ≥ 256 μg/mL)。

该成果构建了“人工智能赋能+知识驱动”的多肽设计新范式,为多肽设计提供了通用性强、可解释性高、适用于零样本病原体的新方法,推动了人工智能在精准药物设计领域的应用边界。研究人员认为,该人工智能方法有效突破了“特定病原体抗菌肽设计难以实现”的长期瓶颈,为未来抗菌肽药物的智能化、精准化研发提供了关键工具,有望显著提升抗菌肽设计的通用性与开发效率。华中农业大学天成彩票 王永康博士为论文第一作者,章文教授为通讯作者,天成彩票 博士生李梦露、黄锋、邱闽瑶等参与该项研究。

章文教授团队长期致力于人工智能在蛋白质设计与药物发现领域的交叉研究,近年来在抗体建模、抗菌肽生成、分子生成模型等方向取得系列进展,相关成果发表在 Cell Genomics、Genome Biology、Advanced Science等期刊,以及 ACL、AAAI、IJCAI 等人工智能领域顶会。

absract

Generative models have shown considerable promise in antimicrobial peptide design; however, their ability to generate pathogen-specific peptides remains limited due to data scarcity. In this study, we introduce KPPepGen, a controllable generative framework that leverages knowledge-aware pathogen prompts derived from pre-training on Gene Ontology and pathogen knowledge graphs, which act as knowledge injections to guide a diffusion model in generating biologically plausible peptides tailored to specific pathogens. Then, KPPepGen is extended for peptide optimization by integrating prompt-guided partial diffusion with multi-site combinatorial mutations. Experimental results show that KPPepGen can simultaneously generate valid peptides for 56 distinct pathogens, achieving high novelty, favorable physicochemical properties, and delivering over a 10% performance improvement for pathogens with limited training data. Further analysis demonstrates that KPPepGen effectively captures essential sequence and structure patterns characteristic of individual pathogens. The optimization results reveal a high success rate of 44.3% for Magainin 2, along with an average improvement of 7.6% compared to the ESM-based method, underscoring the effectiveness of KPPepGen in enhancing the overall performance of peptides. Finally, for clinically relevant pathogens such as E. coli and S. aureus, KPPepGen successfully generated nine novel peptides that exhibited strong antimicrobial activity and low cytotoxicity in the wet-lab evaluation.

原文链接://doi.org/10.1002/advs.202507457